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-------------------------------------------------------Abstract--------------------------------------------------------- 
Trigonometric and polynomial functions are generally used in classical analysis of line continuum. 

Trigonometric functions tend to be good for direct use in the governing differential equations as well as in 

direct variational calculus. On the other hand, polynomial functions are only good for use in direct variational 

calculus because they give trivial results when used directly in governing differential equations. This explains 

the general resort to trigonometric functions in classical flexural linear continuum analysis. However, the 

problem with trigonometric functions is that it is very difficult to satisfy the boundary conditions of a propped 

cantilever linear continuum when a trigonometric shape function is used. Thus, many trial functions based on 

trigonometric functions, polynomial functions, and combinations of both are currently in use, none of which is 
effective for all cases of line continuum analysis. This work presents a new polynomial shape function derived 

from the exact general solutions of the governing differential equations that would be suitable for use in direct 

variational calculus for analyzing all the basic forms of line continuum. A general polynomial shape function 

for linear continuum is first developed from the basic governing differential equations. Peculiar polynomial 

shape functions were then developed for four different cases of linear continua, namely pin–roller supports, 

clamp–roller supports, clamp–clamp supports, and clamp–free supports by satisfying their boundary conditions 

in the general shape function. These peculiar polynomial shape functions were applied in analyzing pure 

bending, free vibration, and buckling of line continuum by direct variational calculus. The results were found to 

be identical or very close to the exact results obtained using standard trigonometric shape functions in 

equilibrium approach, the percentage differences being 0% for pure bending analysis, 0-6.383% for buckling 

analysis, and 0-2.52% for free vibration analysis. These results confirm that the new polynomial shape function 
developed in this work is effective for analysis of all cases of line continuum with different boundary conditions. 

It is therefore recommended for use by structural analysts. 
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I. INTRODUCTION 
Trigonometric and polynomial functions have their merits and demerits when used in classical analysis 

of line continuum. Trigonometric functions give two results, one trivial and the other non-trivial, when used 

directly in the governing differential equations or in minimized total potential energy functionals, which is a 

form of direct variational calculus. On the other hand, polynomial functions also give non-trivial results when 

used in minimized total potential energy functionals but are weak when used directly in governing differential 

equations as they give trivial results. This weakness in polynomial functions when used directly in governing 

differential equations may be the reason for the general resort to trigonometric functions in classical flexural 

linear continuum analysis.However, although trigonometric functions are good for use in differential equations, 
they still have the problem that it is very difficult to satisfy the boundary conditions of a propped cantilever 

linear continuum (C – R line continuum) when a trigonometric shape function is used; attempting to do so 

results in a trivial peculiar solution (that is w = 0). Therefore, even analysts who are used to trigonometric 

functions still revert to some form of polynomial shape functions when a propped cantilever linear continuum is 

involved (El Naschie, 1990; Iyengar, 1988; Kassimali, 2011; Ghali et al., 2009). Thus, many trial functions 

based on trigonometric functions, polynomial functions, and combinations of both are currently in use, none of 

which is effective for all cases of line continuum analysis. In fact, the search for suitable shape functions has 

dominated classical and numerical research in solid mechanics, especially in recent times. This work aims at 

providing a new polynomial shape function derived from the exact general solutions of the governing  

differential equations that would be suitable for use in direct variational calculus for analyzing all the basic 

forms of line continuum.   
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II. BASIC EQUATIONS 
The characteristic of a bent line continuum is defined with a fourth order differential equation given 

byUgural (1999) for a beam in pure bending as in equation (1). 
 

 
 

The governing equation for a slender columnin buckling is also of fourth order, given by Iyengar (1988) as in 

equation (2). 

 
Chakraverty (2009) has also givena fourth order governing differential equation for a free vibrating beam as in 

equation (3). 

 
Where EI, ρ, and A are flexural stiffness, density, and cross-section area of the member respectively;w and λ are 

the deflection and natural frequency of vibration respectively;Pis the uniform distributed load taken as constant 

load per meter length,and N is the axial load. 

Equations (1), (2), and (3)should all have unique solutions because they are all unique. Since the load of 

equation (1) is uniformly distributed, the solution can readily be taken as in equation (4). 

 
Considering cases where the load may not always be uniform, the solution of equation (1) will generally be as 

stated in equation (5). 

 
It can be seen from equations (4) and (5) that the solution of equation (1) is in the form of a finite power series 

that could be truncated at about the fifth term.  

Equations (2) and (3) cannot be easily integrated directly as equation (1). Assume an exponential solution of the 

form shown in equation (6a). 

 

Let  in equation (2); i. e. ; then the general solution of equation (2) is as shown in equation 

(6b) which can also be written as in equation (6c). 

 

 

 

 
the general solution of the differential equation is as shown in 

equation (7) (Goodwine, 2010; Bird, 2010; James et al, 2011). 

 
Equations (6b), (6c), and (7) are exponential functions. In accordance with Stroud (1982), Goodwine (2010), 

Bird (2010), and James et al. (2011), these equations can be transformed into trigonometric functions as shown 

in equations (8) to (11) or into polynomial functions (power series) as shown in equations (12) to (15).  
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Thus, the general solutions of equations (2) and (3)can be transformed from exponential forms to either 

trigonometric or polynomial forms. Applyingthe trigonometric equations (8), (9), (10), and (11) as required, the 

exponentialequations (6b), (6c), and (7)can be transformed into trigonometric general shape functions as shown 

in equations (16a), (16b), and (17). 

 

 

 
 

2.1 GENERAL POLYNOMIAL SHAPE FUNCTIONFOR LINEAR CONTINUUM 

Substitution of equations (14) and (15) into equation (6b) results in equation (18): 

 

 

 
Similarly, substituting equations (14) and (15) into equation (6c) results in equation (19): 

 

 

 
Substitution of equations (12), (13), (14) and (15) into equation (7) results in equation (20): 

 

 

 
It can be seen that equations (5), (18), (19), and (20) are identical. These equations can be written as shown in 

equation (21): 

 
Equation (21) is the general polynomial shape function.It gives the general solution of a flexural line continuum 
in the form of infinite power series.  

 

2.2 PECULIAR POLYNOMIALSHAPE FUNCTIONS FOR LINEAR CONTINUAWITH VARIOUS 

BOUNDARY CONDITIONS  

Satisfying the boundary conditions of a particular line continuum in equation 21 will result in the exact 

peculiar shape function for the continuum in question. There are four boundary conditions for a flexural line 

continuum in solid mechanics, two at each end of the continuum. However, the number of terms in the general 

polynomial shape function is infinite. Hence, satisfying four conditions will also give a peculiar shape function 

with infinite number of terms. The nature of the general polynomial shape function of equation (21) as can be 

seen in equations (5), (18), (19), and (20) suggests that it converges at a finite or definite number of terms. If the 

infinite shape function is truncated at nth term and the four boundary conditions are satisfied, then the peculiar 

shape function will have (n – 4) degrees of freedom. If the function converges at nth term then it becomes a 
finite series as expressed in equation (22). 

 
It is always better to check the convergence of the seriesbeginning with one or two degrees of freedom 

corresponding to truncating the shape function at the fifth and sixth terms respectively, as shown in equations 

(23) and (24). 
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Four linear continua with different boundary conditions were studied in this work, namelypin – roller supports 

(P–R), clamp – roller supports (C–R), clamp – clamp supports (C–C), and clamp – free supports (C–F). Their 

boundary conditions are shown in table 1. Satisfying these boundary conditions in equations (23) and (24) yield 

the peculiar shape functions presented in table 2. 

 

Table 1: Four line continua and their boundary conditions 

 

Line Continuum Boundary Conditions Line Continuum Boundary Conditions 

 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 

Legend: M =Bending moment; V = Shear force 

 
Table 2: Peculiar shape functions of flexural line continua of one and two degrees of freedom 

 

Line Continuum One degree of freedom  Two degrees of freedom  

P – R line continuum  

 

 

C – R line continuum 
 

 

 

C – C line continuum  
 

 

C – F line continuum 

For pure bending or free vibration 

analysis 
 

 

 

C – F line continuum 

For instability buckling analysis 

 

 
Where  

D = -1.1124 

 

 
Where  

D = -1.07200257 

             E = -3.14400514 

 

 

2.3 APPLICATION OF THE PECULIAR POLYNOMIAL SHAPE FUNCTIONS IN LINE 

CONTINUUM ANALYSIS BY DIRECT VARIATIONAL CALCULUS 

The peculiar polynomial shape functions of one and two degrees of freedom in table 2 can be applied 

in analyzing pure bending, free vibration, and buckling of line continuum by direct variational calculus. The 

direct variational calculus functional to be used is the total potential energy fuctional given by El-Naschie 

(1990) as shown in equations (25), (26), and (27). These are the total potential energy functional for pure 
bending, buckling, and free vibration analyses of flexural line continuum respectively. 
 

 

Pin – Roller beam 
P-R 

L 

Clamp – Roller beam 
C-R 

 

L 

Clamp – free beam 
C-F 

L 

Clamp – Clamp beam 
C-C 

L 
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Using the non-dimensional  can be written as shown in 

equations . 

 

 

 
Substituting the peculiar polynomial shape functions of one and two degrees of freedom from the four linear 
continua of table 1 into equations (28), (29), and (30) and minimizing the resulting functions gives results for 

pure bending analysis, buckling analysis, and free vibration analysis as presented intables 3, 4, and 5 

respectively. Exact results obtained using standard trigonometric shape functions in equilibrium approachare 

also shown in the tables for comparison with results from this workusing direct variational calculus.  
 

Table 3: Results for pure bending analysis 

 

Line Continuum 

 
 

Exact Result 
Result from this work 

One degree of freedom Two degrees of freedom 

P – R 

   
 

 
C – C 

   
 

 
C – R 

   
 

 
C – F 

   
 

 
 

Table 4: Results for buckling analysis 

 

Line Continuum 

 

 

Exact Result 
Result from this work 

One degree of freedom Two degrees of freedom 

P – R 

   
C – C 

   
C – R 

   
C – F 

   

 

Table 5: Results for free vibration analysis 
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Line 

Continuu

m 

 

 

Exact Result 

Result from this work 

One degree of freedom 
Two degrees 

of freedom 

S – R 

 
 

 
 

 
 

C - C 

 
 

 
 

 
 

C – R 

 
 

 
 

 
 

C - F 

 
 

 
 

 
 

 

III. DISCUSSION OF RESULTS AND CONCLUSIONS 
It can be seen from table 3 that the results for pure bending analysis from this work using direct 

variational calculus are the same as the exact results obtained using standard trigonometric shape functions in 

equilibrium approach. It is interesting to also note that theresults for two degrees of freedom shape function are 

the same as those for one degree. This should be expected since, for uniformly distributed load, direct 

integration of equation (1) gave equation (4), which is a truncation of the infinite series  

Table 4also shows that the results for buckling 

analysis from this work are virtually the same as the exact results, the highest percentage difference being only 

6.383% for C – C continuum. The results of this work for both one degree and two degrees of freedom are upper 

bound to the exact results, this being one of the characteristics of direct variational principle. These results 
suggest that the infinite series could be truncated at the fifth or sixth term to get the exact finite polynomial 

shape function for linear continuum buckling analysis.Table 5 further shows that the results for free vibration 

analysisfrom this work are similar to the exact results, the highest percentage difference being only2.52% for 

two degree of freedom shape function of P – R continuum. This confirms that the infinite series actually 

converges at the fifth term.Therefore, it can be safely concluded that truncating the infinite polynomial series at 

the fifth term gives results that are identical or very close to the exact results. Thus, the fifth term finite 

polynomial series can be taken as the exact shape function when transforming the exponential shape function 

into polynomial shape function. Finally, the results confirm that the new polynomial shape function developed 

in this work is effective for analysis of all cases of line continuum with different boundary conditions. It is 

therefore recommended for use by structural analysts. 
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